Abstract

Rice (Oryza sativa L.) is a staple food and a significant source of pollutant gases, such as nitrous oxide (N2O) and ammonia (NH3). While aeration irrigation can significantly increase rice yield, its impact on N2O and NH3 emissions, particularly the nitrogen (N) cycling mechanisms, remains unclear. Here, we analyzed the effects of soil air injection (SAI) on N2O and NH3 emissions, soil properties, rice N uptake and microbial N cycling, compared with soil without air injection (the control). SAI increased soil oxygen diffusion rate (SODR) by 31–107 %, raised soil pH by 0.4–0.9 units, enhanced total N uptake by rice by 8.3 %, and reduced N2O emissions by 17 % and NH3 volatilization by 16 %. The increase in SODR enhanced the N content in rice leaves, which subsequently suppressed NH3 volatilization. The reduction in N2O emissions was mainly attributed to the decline in norC gene abundance, while the increased abundances of amoB and GDH1 genes contributed to the suppression of NH3 volatilization. The abundance of norC was negatively correlated with Actinobacteria, whereas amoB and GDH1 abundances were positively correlated with Thaumarchaeota and Proteobacteria, respectively. Actinobacteria abundance initially increased and then decreased with rising SODR, while Thaumarchaeota abundance consistently increased as SODR rose. Additionally, the increase in soil pH promoted the abundance of Proteobacteria. In conclusion, SAI increased N uptake in rice leaves and influenced key N-cycling microorganisms (Actinobacteria, Thaumarchaeota, and Proteobacteria) and genes (norC, amoB and GDH1) by enhancing SODR and soil pH, thereby reducing N2O and NH3 emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.