Abstract

The inherent properties of the very-high-temperature reactor (VHTR) facilitate the design of the VHTR with high degree of passive safe performances, compared to other type of reactors. However, it is still not clear if the VHTR can maintain a passively safe function during the primary-pipe rupture accident, or what would be a design criterion to guarantee the VHTR with the high degree of passively safe performances during the accident. The primary-pipe rupture accident is one of the most common of accidents related to the basic design regarding the VHTR, which has a potential to cause the destruction of the reactor core by oxidizing in-core graphite structures and to release fission products by oxidizing graphite fuel elements. It is a guillotine type rupture of the double coaxial pipe at the nozzle part connecting to the side or bottom of the reactor pressure vessel, which is a peculiar accident for the VHTR. If a primary pipe ruptures, air will be entered into the reactor if there is air in the reactor containment or confinement vessels. This study is to investigate the air ingress phenomena and to develop the passively safe technology for the prevention of air ingress and of graphite corrosion. The present paper describes the influences of a localized natural circulation in parallel channels onto the air ingress process during the primary-pipe rupture accident of the VHTR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.