Abstract
We aimed to determine the impact of air inflow into vacuum-type immobilization devices (VIDs) on setup errors. We assigned 70 patients undergoing radiotherapy for head and neck cancer to groups V (n = 34) or N (n = 36) according to whether the VIDs were deflated weekly or not deflated during treatment, respectively. We calculated systematic errors (Σ) as the standard deviations (SDs) of mean errors, and random errors (σ) as the root mean square of SDs in each patient. We compared overall means (μ), SDs (SDoverall), random errors and systematic errors. We also measured temporary pressure changes in VIDs to determine the influence of pressure changes in VIDs on setup errors. The μ was within 0.20mm and 0.2° in both groups, whereas SDoverall significantly differed between them. The SDoverall differed the most in the Roll axes of groups N (0. 87°) and V (0.58°). The Σ and σ values were lower in all axes of group V than in group N. Despite the initial deflation target of -70kPa, the pressure in VIDs reached -5kPa at the end of treatment. However, weekly deflation apparently maintained pressure at -20kPa. Effective pressure control in VIDs can reduce patient-by-patient variation and improve setup reproducibility for individual patients, consequently resulting in small variations among overall setup errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.