Abstract

In order to study the effects of the spinning conditions on the structure and the properties of the regenerated fiber, cellulose was dissolved in ionic liquid and then spun into fiber using an air-gap spinning process. The solution concentration, the take-up speed and the fixation of the fiber ends during coagulation improved the crystallinity and the tensile strength at the same time. The fiber surface became smooth by addition of DMF (dimethylformamide). However, it decreased the crystallinity and the tensile strength of the fibers. We revealed that the developed structure during coagulation determined the morphology and the properties of the fibers. The co-solvent resulted in smooth surface of the fiber and also changed the mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.