Abstract
Summary With the intent of solving problems that emerge at the later stage of waterflooded reservoirs, we study the feasibility of air-foam flooding of waterflooded light-oil reservoirs using the method of physical simulation. Through isothermal combustion experiments, the influence of clay mineral and foam on low-temperature-oxidation (LTO) reactions is investigated qualitatively. Then, the quantitative investigation of water saturation on oxidation rate and O2 consumption rate is discussed. After that, some dynamic foam displacement experiments are also performed, including the singletube displacement experiments of air foam at different water saturations and enhanced-oil-recovery (EOR) experiments of air-foam flooding in parallel tubes. In addition, in order to verify the O2 consumption capacity of the sample oil, a slimtube experiment is conducted. The results show that the presence of clay minerals could speed the process of the LTO reaction, while the presence of foam will slow this process. The LTO reaction is not significantly associated with oil viscosity. The concentration of O2 was near zero when the gas breakthrough occurred. Once the oxidation region reached the outlet, the concentration of O2 suddenly increased, and the effect of O2 consumption became worse. G64-38 crude oil performs better in the process of O2 consumption. The injection of air foam could effectively plug the high-permeability tube and restart the low-permeability tube. This paper could be used as a tool for the successful design of air-foam flooding at a later waterflood stage to enhance crude-oil recovery in light-oil reservoirs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.