Abstract

Abstract Local ventilation is the most important method in the control of welding fumes. The present practice for dimensioning local exhaust is to select capture velocity and then calculate the required air flow, assuming that the contaminant source is located on the hood center-line. Empirical and analytical formulas for these centerline velocities have been derived for simple exhaust hood configurations. However, in more complex cases the velocities may be difficult to estimate. In this study a turbulent air flow field for a flanged welding exhaust hood was calculated numerically using the FLUENT computer code based on the finite volume method. The turbulence model used in the simulation was the standard two-equation κ-e turbulence model. The accuracy of the calculations was verified by experimental measurements conducted under controlled conditions. The air velocities were measured with a laser-Doppler anemometer, which is a nonintrusive optical measurement method. The results showed that the complex s...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.