Abstract

The analysis of heat transfer by forced convection steady, laminar flow around three triangle cylinders. A numerical investigation is conducted to analyze the variation in cross-section from a triangle to a circle by altering the edges of a triangular cylinder within a two-dimensional channel in the air. The effect of Reynolds number and transverse pitch (S_T) on the heat transfer characteristics are studied. Five Reynolds numbers (based on inlet height channel) are studied (Re = 100, 200, 400, 800, 1200) with a constant heat flux on cylinder surface (q^''= 5000 W/m^2), and S_T = 1.5D, 2D, 3D, the D is triangle side length. The governing partial differential equations, which include the continuity, momentum, and energy equations, are resolved by computational methods using workbench 2022R2 program. The results reveal that heat transfer rises as the transverse distance and the diameter of the rounded edge change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.