Abstract
The paper presents results documenting the mechanism of facilitation of the three-phase contact (TPC) formation due to gas entrapped during immersion of hydrophobic (Teflon) plates into distilled water and n-octanol solutions. Collisions, bouncing, the time scale of the TPC formation, and bubble attachment to Teflon plates of different surface roughness were studied using a high-speed camera. Processes occurring during the microscopic wetting film formation at the Teflon plates were monitored using the microinterferometric method (Scheludko-Exerowa cell). A strong relation between the time necessary to form a stable TPC and the roughness of the Teflon was observed. The higher the Teflon roughness was the shorter the time for the TPC formation. This effect can be attributed to two factors: (i) local differences in the thickness of the thinning intervening liquid layer (quicker attainment of rupture thickness at pillars of rough surface) and/or (ii) the presence of gas at the hydrophobic surface. Experimental findings, that (i) prolongation of the plate immersion time resulted in quicker TPC formation, (ii) white irregular and disappearing spots (air pockets) were recorded during the wetting film formation, and (iii) high n-octanol concentration caused prolongation of the time of the TPC formation, show that attachment (TPC formation) of the colliding bubble to hydrophobic surfaces was facilitated by air entrapped at the Teflon plates (and re-distributed) during their immersion into water phase. Thus, on collision instead of solid/gas wetting liquid film a thin gas/liquid/gas foam film was formed which facilitated the TPC formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.