Abstract
Experimental data are presented, showing that the flying height of a slider in a hard disk drive can be altered by the chemical nature of the molecularly-thin lubricant film on the disk surface. It is suggested that this effect is likely due to entrapment of the air molecules, both nitrogen and oxygen, within the lubricant film, which results in pressurization loss within the air bearing gap, and lower slider flying height. For the two advanced multidentate lubricants reported in this study, the amount of flying height change is almost insignificant for one of them, but amount to about 0.7 nm, i.e. a significant fraction of the magnetic spacing budget for the other. Bulk air solubility data suggest that the magnitude of this effect is diminished for lubricant molecules with a lower density of backbone ether linkages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.