Abstract

Multi-compartment dental clinics present significant airborne cross-infection risks. Upper-room ultraviolet germicidal irradiation (UR-UVGI) system have shown promise in preventing airborne pathogens, but its available application data are insufficient in multi-compartment dental clinics. Therefore, the UR-UVGI system's performance in a multi-compartment dental clinic was comprehensively evaluated in this study. The accuracy of the turbulence and drift flux models was verified by experimental data from ultrasonic scaling. The effects of the ventilation rate, irradiation zone volume, and irradiation flux on UR-UVGI performance were analyzed using computational fluid dynamics coupled with a UV inactivation model. Different patient numbers were considered. The results showed that UR-UVGI significantly reduced virus concentrations and outperformed increased ventilation rates alone. At a ventilation rate of six air changes per hour (ACH), UR-UVGI with an irradiation zone volume of 20% and irradiation flux of 5 μW/cm2 achieved a 70.44% average virus reduction in the whole room (WR), outperforming the impact of doubling the ventilation rate from 6 to 12 ACH without UR-UVGI. The highest disinfection efficiency of UR-UVGI decreased for WRs with more patients. The compartment treating patients exhibited significantly lower disinfection efficiency than others. Moreover, optimal UR-UVGI performance occurs at lower ventilation rates, achieving over 80% virus disinfection in WR. Additionally, exceeding an irradiation zone volume of 20% or an irradiation flux of 5 μW/cm2 notably reduces the improvement rates of UR-UVGI performance. These findings provide a scientific reference for strategically applying UR-UVGI in multi-compartment dental clinics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.