Abstract

ABSTRACT Atmospheric air density has an essential role in the energy production of wind turbines. It is directly proportional to the power taken out from the airflow. The common practice at a planned wind farm location is to measure atmospheric parameters and calculate the air density as monthly and yearly averages based on the International Committee for Weights and Measures (CIPM). After that, the reference point is used to calibrate spatial data to study the siting of wind turbines at a large spatial domain of interest using an engineering method based on only temperature and elevation a.m.s.l. The engineering method is also employed with only temperature and elevation data when there are no pressure and relative humidity measurements. The point-to-spatial transformation is done through the simplified engineering formula, and it is known that the method is primarily valid up to a.m.s.l. Above these elevations, the engineering methods have a significant bias, up to error in estimating the air density. This bias leads to a substantial error in energy yield estimations. This study uses more than one in-situ measurement at high altitude locations to calibrate the engineering method at the Alpine Convention Perimeter. It aims to improve the calculation accuracy by calculating the pressure gradient within the region. It is found that the seasonal and yearly averaging errors can be improved by to in the air density calculation with the new approach. The method can be applied to other locations with similar conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call