Abstract

Air curtains (ACs) are plane turbulent impinging jets that are used to separate two environments in terms of heat and mass transfer while still allowing traffic between these environments. The many applications of ACs across a wide variety of industries makes the evaluation of their performance an important but difficult task. The aim of this paper is to introduce a performance indicator, called the adapted separation efficiency, that is suitable for different types of systems that may involve different AC configurations (downward blowing, upward blowing, lateral blowing, multiple jets, etc.) at multiple scales, different transported quantities (heat, water vapor, particles, gases, etc.) subjected to various transport mechanisms (advection, molecular and turbulent diffusion) and varying environmental conditions (gradients in environmental pressure and/or density). It is defined using a conventional efficiency formula. The principle of this performance indicator is illustrated with a generic case study where the performance is evaluated for two basic AC configurations involving cross-jet pressure and density gradients, as well as different jet momentum fluxes. The case study is conducted based on computational fluid dynamics employing validated large eddy simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.