Abstract

WAAM (Wire-Arc-Additive-Manufacturing) is an additive manufacturing process which uses arc welding to produce metal parts. This process is prone to heat accumulation, i.e. a progressive increase of the interlayer temperature and molten pool size, having detrimental consequences on the material properties and on the workpiece integrity. This paper investigates the effect of air jet impingement, an active cooling technique, to prevent heat accumulation, on the surfaces of WAAM workpieces. A reference test case was manufactured using traditional free convection cooling and air jet impingement. The workpiece temperature was measured using Ktype thermocouples. The manufactured surfaces were measured using a coordinate measuring machine and compared in terms of deposition efficiency, deposit height and average arithmetical deviation. The temperature results highlight that air jet impingement is effective in preventing the occurrence of heat accumulation. The surface data highlight that air jet impingement increase the deposited height and the surface waviness with a consequent decrease of the deposition efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call