Abstract

Air circulation, generally an integral part of environmentally-controlled plant growth chambers, retarded tomato (Lycopersicon lycopersicum Karstens) seedling growth seismomorphogenetically. Continuous air movement at a speed of 0.5 to 0.7 m·s-1 inhibited growth by about 40%. Growth inhibition was noticeable with as little as 15 min of daily exposure to the air circulation; a continuous exposure gave the greatest amount of growth inhibition. The retarding effect of air on seedling growth was transient and required a continued daily exposure to air movement. Continuous aeration of seedlings inhibited growth to such an extent that in a two factor experiment, ie aeration and water stress, the water stress effects were completely masked in the aerated chamber by the aeration effect. The results have important implications for plant growth experiments in chambers equipped with air circulation: seedling growth may be affected more by the air circulation in the growth chamber than by an experimental treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call