Abstract
Venous air embolism, which may complicate medical and surgical procedures, activates complement and triggers thromboinflammation. In lepirudin-anticoagulated human whole blood, we examined the effect of air bubbles on complement and its role in thromboinflammation. Whole blood from 16 donors was incubated with air bubbles without or with inhibitors of C3, C5, C5aR1, or CD14. Complement activation, hemostasis, and cytokine release were measured using ELISA and quantitative PCR. Compared with no air, incubating blood with air bubbles increased, on average, C3a 6.5-fold, C3bc 6-fold, C3bBbP 3.7-fold, C5a 4.6-fold, terminal complement complex sC5b9 3.6-fold, prothrombin fragments 1+2 (PTF1+2) 25-fold, tissue factor mRNA (TF-mRNA) 26-fold, microparticle tissue factor 6.1-fold, β-thromboglobulin 26-fold (all p < 0.05), and 25 cytokines 11-fold (range, 1.5-78-fold; all p < 0.0001). C3 inhibition attenuated complement and reduced PTF1+2 2-fold, TF-mRNA 5.4-fold, microparticle tissue factor 2-fold, and the 25 cytokines 2.7-fold (range, 1.4-4.9-fold; all p < 0.05). C5 inhibition reduced PTF1+2 2-fold and TF-mRNA 12-fold (all p < 0.05). C5 or CD14 inhibition alone reduced three cytokines, including IL-1β (p = 0.02 and p = 0.03). Combined C3 and CD14 inhibition reduced all cytokines 3.9-fold (range, 1.3-9.5-fold; p < 0.003) and was most pronounced for IL-1β (3.2- versus 6.4-fold), IL-6 (2.5- versus 9.3-fold), IL-8 (4.9- versus 8.6-fold), and IFN-γ (5- versus 9.5-fold). Antifoam activated complement and was avoided. PTF1+2 was generated in whole blood but not in plasma. In summary, air bubbles activated complement and triggered a C3-driven thromboinflammation. C3 inhibition reduced all mediators, whereas C5 inhibition reduced only TF-mRNA. Combined C5 and CD14 inhibition reduced IL-1β release. These data have implications for future mechanistic studies and possible pharmacological interventions in patients with air embolism.
Highlights
C4d was 538 ng/ml, in blood incubated without air compared with 628 ng/ml, in blood incubated with air bubbles (p 5 0.09)
C3a was 709 ng/ml, in blood incubated without air compared with 4632 ng/ml, in blood incubated with air bubbles (p < 0.0001)
C3bc was 16 complement arbitrary unit (CAU)/ml, in blood incubated without air compared with 88 CAU/ml, in blood incubated with air bubbles (p < 0.0001)
Summary
The primary aim of this study was to investigate the extent to which complement activation contributes to the thromboinflammatory reaction induced by air bubbles
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.