Abstract

Wet adhesion is greatly demanded in fields of wearable devices, wound dressings, and smart robotics. However, reusable, noninvasive and convenient adhesive pads in the liquid environment have remained a challenge. Here, a novel concept of underwater adhesion inspired by the diving beetle, which utilizes the air bubbles as an adhesive to realize nondestructive and repeatable adhesion working across a wide range of scales is shown. The mechanism of underwater bubble adhesion is revealed by the capillarity of air-bubble bridge, of which the property depends on the dynamic bubble contact angles and the gap distance. The design principle of the air bubble-based underwater adhesion is proposed and validated to tune the interfacial acting force by theoretical and experimental results. Finally, a strong, reusable surface adhesive based on air bubble bridges is demonstrated from macro- to microscales in applications of particle manipulation and particle self-assembly. This unique view of underwater bubble adhesion provides new ideas for broader applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call