Abstract

Thermomechanical actuation (TMA) at the transducer region of the air bearing surface (ABS) protrudes the transducers toward the recording media, yet also results in greater air bearing slider lift. The ratio of these two effects is defined as the TMA efficiency. An expression based on dimensional analysis is introduced to describe the changes of air bearing forces due to TMA protrusion. A framework is proposed that facilitates optimization of ABS design for improved TMA efficiency. On the basis of the theory presented, several ABSs are designed to have different TMA efficiency. Numerical solutions of these air bearings respect to the protrusion shows agreement with the proposed theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.