Abstract

Aiming to pursue an ultrasound signal with a significantly improved negative acoustic pressure level, which is one of the critical characteristics for exciting the ultrasound cavitation effect, a real applicable air-backed photoacoustic transmitter is presented. Different from the conventional solution of relying on a complicated focusing structure design, it works based on an acoustic signal phase reversal and amplitude superposition strategy. By using an innovative sandwich-like suspending photoacoustic layer with optimized structure design, the initial backward-propagating positive sound pressure can be converted into the forward-propagating negative one efficiently. For proof-of-concept demonstration, photoacoustic transmitter prototypes adopting a polydimethylsiloxane (PDMS)/candle soot nanoparticle/PDMS-PDMS composite as a photoacoustic conversion layer were fabricated and characterized. From experiment results, an acoustic signal with a remarkable ratio of negative pressure level to a positive one of 1.3 was successfully realized, which is the largest value ever reported, to the best of our knowledge. Moreover, when compared to the commonly used glass and PDMS-backing conditions in the photoacoustic area, nearly 200% and 400% enhancements in negative pressure output were achieved, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.