Abstract

Initial alignment is a prerequisite for the work of INS and integrated navigation system. In order to solve the problem of rapid alignment of guided projectiles under high dynamic conditions, this paper proposes an air coarse alignment method based on kinematics constraints, and compensate for the influence of the earth’s rotation. At the same time, this paper increases the pitch and yaw angle measurement information in the fine alignment process, thereby improving the speed and accuracy of air fine alignment. Simulation experiments show that after compensating for the influence of the earth’s rotation, the roll angle alignment error is reduced by 1°. Compared with the traditional speed + position six-dimensional measurement fine alignment method, after adding pitch and yaw angle measurement information, The eastward speed error is reduced by 0.044 m/s, the northward speed error is reduced by 0.156 m/s, the sky speed error is reduced by 0.126 m/s, the eastward misalignment angle error is reduced by 2.1°, and the northward misalignment angle error is reduced by 0.7°, and the sky misalignment angle error is reduced by 0.86°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.