Abstract

Microwave ablation (MWA) is a novel treatment modality that can lead to the death of tumor cells by heating the ions and polar molecules in the tissue through high-speed vibration and friction. However, the single hyperthermia is not sufficient to completely inhibit tumor growth. Herein, a thermodynamic cancer-therapeutic modality has been fabricated which could be able to overcome hypoxia's limitations in the tumor microenvironment. Using thermo-sensitive liposomes (TSLs) and oxygen-independent radical generators (2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride [AIPH]), a nano-drug delivery system denoted as ATSL is developed for efficient sequential cancer treatment. Under the microwave field, the temperature rise of local tissue could not only lead to the damage of tumor cells but also induce the release of AIPH encapsulated in ATSL to produce free radicals, eliciting tumor cell death. In addition, the ATSL developed here would avoid the side effects caused by the uncontrolled diffusion of AIPH to normal tissues. The ATSLs have shown excellent therapeutic effects both in vitro and in vivo, suggesting its highly promising potential for clinic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.