Abstract

A cationic Ir(III) complex, Ir2, with a diphenylamino (DPA)-substituted 2-phenylbenzothiazole derivative as the cyclometalating ligand was designed and synthesized. Ir2 shows obvious aggregation-induced phosphorescent emission (AIPE) in H2O/CH3CN, compared with a non-DPA-substituted Ir1. The AIPE-active Ir2 demonstrates efficient detection of 2,4,6-trinitrophenol, providing a higher quenching constant (KSV = 2 644 330 M-1vs. 73 583 M-1 for Ir1) and a lower limit of detection (LOD = 2.23 nM vs. 50.17 nM for Ir1). High-resolution mass spectrometry analysis and density functional theory calculations demonstrate that photoinduced electron transfer may be responsible for the emission quenching. Immobilized in an ethyl cellulose film, Ir2 exhibits high oxygen sensitivity (KappSV = 0.0572 Torr-1vs. 0.0090 Torr-1 for Ir1) and excellent reversibility in 10 cycles. This work reveals that the DPA group plays an important role in tuning the AIPE properties and increasing the performances of the luminescent probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.