Abstract

The transformation of cities into smarter and more efficient environments relies on proactive and timely detection and maintenance of city-wide infrastructure, including roadside infrastructure such as road signs and the cleaning of illegally dumped rubbish. Currently, these maintenance tasks rely predominantly on citizen reports or on-site checks by council staff. However, this approach has been shown to be time-consuming and highly costly, resulting in significant delays that negatively impact communities. This paper presents AIoT-CitySense, an AI and IoT-driven city-scale sensing framework, developed and piloted in collaboration with a local government in Australia. AIoT-CitySense has been designed to address the unique requirements of roadside infrastructure maintenance within the local government municipality. A tailored solution of AIoT-CitySense has been deployed on existing waste service trucks that cover a road network of approximately 100 kms in the municipality. Our analysis shows that proactive detection for roadside infrastructure maintenance using our solution reached an impressive 85%, surpassing the timeframes associated with manual reporting processes. AIoT-CitySense can potentially transform various domains, such as efficient detection of potholes and precise line marking for pedestrians. This paper exemplifies the power of leveraging city-wide data using AI and IoT technologies to drive tangible changes and improve the quality of city life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.