Abstract

We present the most complete atlas of nuclear rings to date. We include 113 rings found in 107 galaxies, six of which are elliptical galaxies, five are highly inclined disc galaxies, 18 are unbarred disc galaxies, and 78 are barred disc galaxies. Star-forming nuclear rings occur in 20% of disc galaxies with types between T=-3 and T=7. We aim to explore possible relationships between the size and morphology of the rings and various galactic parameters. We produce colour index and structure maps, as well as Halpha and Paalpha continuum-subtracted images from HST archival data. We derive ellipticity profiles from H-band 2MASS images in order to detect bars and find their metric parameters. We measure the non-axisymmetric torque parameter, Qg, and search for correlations between bar, ring metric parameters, and Qg. Our atlas of nuclear rings includes star-forming and dust rings. Nuclear rings span a range from a few tens of parsecs to a few kiloparsecs in radius. Star-forming nuclear rings can be found in a wide range of morphological types, from S0 to Sd, with a peak in the distribution between Sab and Sb, and without strong preference for barred galaxies. Dust nuclear rings are found in elliptical and S0 galaxies. For barred galaxies, the maximum radius that a nuclear ring can reach is a quarter of the bar radius. We found a nearly random distribution of PA offsets between nuclear rings and bars. There is some evidence that nuclear ring ellipticity is limited by bar ellipticity. We confirm that the maximum relative size of a star-forming nuclear ring is inversely proportional to the non-axisymmetric torque parameter, Qg, and that the origin of nuclear rings, even the ones in non-barred hosts, are closely linked to the existence of dynamical resonances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.