Abstract
Inflammasomes are multimeric protein complexes that initiate inflammatory cascades. Their activation is a hallmark of many infectious or inflammatory diseases. Their composition and activity are specified by proinflammatory stimuli. For example, the NLRP3 inflammasome is activated in response to cell damage and K+ efflux, whereas the AIM2 inflammasome is activated in response to cytosolic DNA. We used Legionella pneumophila, an intracellular bacterial pathogen that activates multiple inflammasomes, to elucidate the molecular mechanisms regulating inflammasome activation during infection. Upon infection, the AIM2 inflammasome engaged caspase-1 to induce pore formation in the cell membrane, which then caused K+-efflux-mediated activation of NLRP3. Thus, the AIM2 inflammasome amplifies signals of infection, triggering noncanonical activation of NLRP3. During infection, AIM2 andcaspase-11 induced membrane damage, which was sufficient and essential for activating the NLRP3 inflammasome. Our data reveal that different inflammasomes regulate one another's activity to ensure an effective immune response to infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.