Abstract

This paper presents the adaptive integral method (AIM) utilized to solve electromagnetic scattering problems of an arbitrarily shaped conducting body with parametric geometry. The combined field integral equation is used to characterize the scattering problems of a closed conducting body whose surfaces are modeled using curvilinear patches. The formulated integral equations are then discretized and converted to a matrix equation using the method of moments. The resultant matrix equation is then solved by an iterative solver and the AIM is employed to accelerate the matrix-vector multiplication. Numerical results are presented to demonstrate the efficiency of the technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.