Abstract

AbstractMost modern aircraft employ discrete ailerons for roll control. The induced drag, rolling moment, and yawing moment for an aircraft depend in part on the location and size of the ailerons. In the present study, lifting-line theory is used to formulate theoretical relationships between aileron design and the resulting forces and moments. The theory predicts that the optimum aileron geometry is independent of prescribed lift and rolling moment. A numerical potential flow algorithm is used to evaluate the optimum size and location of ailerons for a wide range of planforms with varying aspect ratio and taper ratio. Results show that the optimum aileron design to minimise induced drag always extends to the wing tip. Impacts to induced drag and yawing moment are also considered, and results can be used to inform initial design and placement of ailerons on future aircraft. Results of this optimisation study are also compared to theoretical optimum results that could be obtained from morphing-wing technology. Results of this comparison can be used to evaluate the potential benefits of using morphing-wing technology rather than traditional discrete ailerons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.