Abstract

Forest change detection is crucial for sustainable forest management. The changes in the forest area due to deforestation (such as wild fires or logging due to development activities) or afforestation alter the total forest area. Additionally, it impacts the available stock for commercial purposes, climate change due to carbon emissions, and biodiversity of the forest habitat estimations, which are essential for disaster management and policy making. In recent years, foresters have relied on hand-crafted features or bi-temporal change detection methods to detect change in the remote sensing imagery to estimate the forest area. Due to manual processing steps, these methods are fragile and prone to errors and can generate inaccurate (i.e., under or over) segmentation results. In contrast to traditional methods, we present AI-ForestWatch, an end to end framework for forest estimation and change analysis. The proposed approach uses deep convolution neural network-based semantic segmentation to process multi-spectral space-borne images to quantitatively monitor the forest cover change patterns by automatically extracting features from the dataset. Our analysis is completely data driven and has been performed using extended (with vegetation indices) Landsat-8 multi-spectral imagery from 2014 to 2020. As a case study, we estimated the forest area in 15 districts of Pakistan and generated forest change maps from 2014 to 2020, where major afforestation activity is carried out during this period. Our critical analysis shows an improvement of forest cover in 14 out of 15 districts. The AI-ForestWatch framework along with the associated dataset will be made public upon publication so that it can be adapted by other countries or regions.

Highlights

  • Earth’s forests are under significant pressure of degradation due to human development activities and natural disasters

  • In order to resolve the above-mentioned problems, in this work, we present AI-ForestWatch, an end to end framework for continuous monitoring of the forests by utilizing advancements in the remote sensing and neural network (NN) domains

  • In order to perform these estimations frequently, in this paper, we presented AI-ForestWatch, an end to end framework for forest

Read more

Summary

Introduction

Earth’s forests are under significant pressure of degradation due to human development activities and natural disasters. Forests are carbon dioxide sinks that decrease greenhouse gases in the atmosphere.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.