Abstract

The 12-lead electrocardiogram (ECG) is an integral component to the diagnosis of a multitude of cardiovascular conditions. It is performed using a complex set of skin surface electrodes, limiting its use outside traditional clinical settings. We developed an artificial intelligence algorithm, trained over 600,000 clinically acquired ECGs, to explore whether fewer leads as input are sufficient to reconstruct a 12-lead ECG. Two limb leads (I and II) and one precordial lead (V3) were required to generate a reconstructed 12-lead ECG highly correlated with the original ECG. An automatic algorithm for detection of ECG features consistent with acute myocardial infarction (MI) performed similarly for original and reconstructed ECGs (AUC = 0.95). When interpreted by cardiologists, reconstructed ECGs achieved an accuracy of 81.4 ± 5.0% in identifying ECG features of ST-segment elevation MI, comparable with the original 12-lead ECGs (accuracy 84.6 ± 4.6%). These results will impact development efforts to innovate ECG acquisition methods with simplified tools in non-specialized settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.