Abstract

Background and ObjectiveUtilizing artificial intelligence (AI), a clinical decision support system (CDSS), can help physicians anticipate possible complications of cirrhosis patients before prescribing more accurate treatments. This study aimed to establish a prototype of AI-CDSS modeling using electronic health records to predict five complications for cirrhosis patients who were controlled for oral antiviral drugs, lamivudine (LAM) or entecavir (ETV). MethodsOur modeling attained a web-based AI-CDSS with four steps – data extraction, sample normalization, AI-enabled machine learning (ML), and system integration. We designed the extract-transform-load (ETL) procedure to filter the analytics features from a clinical database. The data training process applied 10-fold cross-validation to verify diverse ML models due to possible feature patterns with medications for predicting the complications. In addition, we applied both statistical means and standard deviations of the realistic datasets to create the simulative datasets, which contained sufficient and balanced data to train the most efficient models for evaluation. The modeling combined multiple ML methods, such as support vector machine (SVM), random forest (RF), extreme gradient boosting, naive Bayes, and logistic regression, for training fourteen features to generate the AI-CDSS's prediction functionality. ResultsThe models achieving an accuracy of 0.8 after cross-validations would be qualified for the AI-CDSS. SVM and RF models using realistic data predicted jaundice with an accuracy of over 0.82. Furthermore, the SVM models using simulative data reached an accuracy of over 0.85 when predicting patients with jaundice. Our approaches implied that the simulative datasets based on the same distributions as that of the features in the realistic dataset were adequate for training the ML models. The RF model could reach an AUC of up to 0.82 for multiple complications by testing with the un-trained data. Finally, we successfully installed twenty models of the suitable ML methods in the AI-CDSS to predict five complications for cirrhosis patients prescribed with LAM or ETV. ConclusionsOur modeling integrated a self-developed AI-CDSS with the approved ML models to predict cirrhosis complications for aiding clinical decision making.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.