7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1002/smll.201601484
Copy DOIJournal: Small | Publication Date: Aug 11, 2016 |
Citations: 91 |
Inorganic materials functionalized with organic fluorescent molecules combine advantages of them both, showing potential applications in biomedicine, chemosensors, light-emitting, and so on. However, when more traditional organic dyes are doped into the inorganic materials, the emission of resulting hybrid materials may be quenched, which is not conducive to the efficiency and sensitivity of detection. In contrast to the aggregation-caused quenching (ACQ) system, the aggregation-induced emission luminogens (AIEgens) with high solid quantum efficiency, offer new potential for developing highly efficient inorganic-organic hybrid luminescent materials. So far, many AIEgens have been incorporated into inorganic materials through either physical doping caused by aggregation induced emission (AIE) or chemical bonding (e.g., covalent bonding, ionic bonding, and coordination bonding) caused by bonding induced emission (BIE) strategy. The hybrid materials exhibit excellent photoactive properties due to the intramolecular motion of AIEgens is restricted by inorganic matrix. Recent advances in the fabrication of AIEgens-functionalized inorganic-organic hybrid materials and their applications in biomedicine, chemical sensing, and solid-state light emitting are presented.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.