Abstract

The engineering of aggregation-induced emission luminogens (AIEgen) based covalent organic frameworks (COFs), TDTA-COF, BTDTA-COF, and BTDBETA-COF are reported, as hyperthermia agents for inhibiting the occurrence of malignant ventricular arrhythmias (VAs). These AIE COFs exhibit dual functionality, as they not only directly modulate the function and neural activity of stellate ganglion (SG) through local hyperthermia therapy (LHT) but also induce the browning of white fat and improve the neuroinflammation peri-SG microenvironment, which is favorable for inhibiting ischemia-induced VAs. In vivo studies have confirmed that BTDBETA-COF-mediated LHT enhances thermogenesis and browning-related gene expression, thereby serving a synergistic role in combating VAs. Transcriptome analysis of peri-SG adipose tissue reveals a substantial downregulation of inflammatory cytokines, highlighting the potency of BTDBETA-COF-mediated LHT in ameliorating the neuroinflammation peri-SG microenvironment and offering myocardial and arrhythmia protection. The work on AIE COF-based hyperthermia agent for VAs inhibition provides a new avenue for mitigating cardiac sympathetic nerve hyperactivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call