Abstract

Digital agriculture employs artificial intelligence (AI) to transform data collected in the field into actionable crop management. Effective digital agriculture models can detect problems early, reducing costs significantly. However, ineffective models can be counterproductive. Farmers often want to validate models by spot checking their fields before expending time and effort on recommended actions. However, in large fields, farmers can spot check too few areas, leading them to wrongly believe that ineffective models are effective. Model validation is especially difficult for models that use neural networks, an AI technology that normally assesses crops health accurately but makes inexplicable recommendations. We present a new approach that trains random forests, an AI modeling approach whose recommendations are easier to explain, to mimic neural network models. Then, using the random forest as an explainable white box, we can (1) gain knowledge about the neural network, (2) assess how well a test set represents possible inputs in a given field, (3) determine when and where a farmer should spot check their field for model validation, and (4) find input data that improve the test set. We tested our approach with data used to assess soybean defoliation. Using information from the four processes above, our approach can reduce spot checks by up to 94%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.