Abstract

Computer-aided synthesis planning (CASP) aims to assist chemists in performing retrosynthetic analysis for which they utilize their experiments, intuition, and knowledge. Recent breakthroughs in machine learning (ML) techniques, including deep neural networks, have significantly improved data-driven synthetic route designs without human intervention. However, learning chemical knowledge by ML for practical synthesis planning has not yet been adequately achieved and remains a challenging problem. In this study, we developed a data-driven CASP application integrated with various portions of retrosynthesis knowledge called “ReTReK” that introduces the knowledge as adjustable parameters into the evaluation of promising search directions. The experimental results showed that ReTReK successfully searched synthetic routes based on the specified retrosynthesis knowledge, indicating that the synthetic routes searched with the knowledge were preferred to those without the knowledge. The concept of integrating retrosynthesis knowledge as adjustable parameters into a data-driven CASP application is expected to enhance the performance of both existing data-driven CASP applications and those under development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.