Abstract
In vehicle security, attack identification has been proposed to identify the compromised electronic control units (ECUs) of a vehicle. Fingerprinting methods using a variety of features have been widely applied to identify attacks. However, these methods only consider the features of an individual ECU, and ignore the logical association among different ECUs. This condition leads to high requirements in terms of feature measurements, and a great deal of useful information is lost to achieve identification. In this paper, an association-learning-based model, designated Aiden, is proposed to identify the compromised ECUs on the edge of V2X communication networks and without feature measurements. Experiments on a real vehicle show the effectiveness of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Green Communications and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.