Abstract

Brain hemorrhage is a type of stroke which is caused by a ruptured artery, resulting in localized bleeding in or around the brain tissues. Among a variety of imaging tests, a computerized tomography (CT) scan of the brain enables the accurate detection and diagnosis of a brain hemorrhage. In this work, we developed a practical approach to detect the existence and type of brain hemorrhage in a CT scan image of the brain, called Accurate Identification of Brain Hemorrhage, abbreviated as AIBH. The steps of the proposed method consist of image preprocessing, image segmentation, feature extraction, feature selection, and design of an advanced classification framework. The image preprocessing and segmentation steps involve removing the skull region from the image and finding out the region of interest (ROI) using Otsu’s method, respectively. Subsequently, feature extraction includes the collection of a comprehensive set of features from the ROI, such as the size of the ROI, centroid of the ROI, perimeter of the ROI, the distance between the ROI and the skull, and more. Furthermore, a genetic algorithm (GA)-based feature selection algorithm is utilized to select relevant features for improved performance. These features are then used to train the stacking-based machine learning framework to predict different types of a brain hemorrhage. Finally, the evaluation results indicate that the proposed predictor achieves a 10-fold cross-validation (CV) accuracy (ACC), precision (PR), Recall, F1-score, and Matthews correlation coefficient (MCC) of 99.5%, 99%, 98.9%, 0.989, and 0.986, respectively, on the benchmark CT scan dataset. While comparing AIBH with the existing state-of-the-art classification method of the brain hemorrhage type, AIBH provides an improvement of 7.03%, 7.27%, and 7.38% based on PR, Recall, and F1-score, respectively. Therefore, the proposed approach considerably outperforms the existing brain hemorrhage classification approach and can be useful for the effective prediction of brain hemorrhage types from CT scan images (The code and data can be found here: http://cs.uno.edu/~tamjid/Software/AIBH/code_data.zip).

Highlights

  • A brain hemorrhage is a type of stroke

  • We focus on improving the performance of the classification of brain hemorrhage types by investigating novel segmentation techniques, features extraction mechanisms, feature selection methods, and machine learning approaches

  • In order to select the relevant features that support the performance of the machine learning method, we adopted a genetic algorithm (GA)-based feature selection approach

Read more

Summary

Introduction

A brain hemorrhage is a type of stroke. It is a result of the bursting of an artery in the brain, causing localized bleeding in the surrounding tissues. There are many types of brain hemorrhage, such as epidural, subdural, subarachnoid, cerebral, and intraparenchymal hemorrhage. They differ in many aspects, such as the size, the region, the shape, and the location within the skull. We propose an automated approach to detect and classify the brain hemorrhage from medical images. We propose an automated approach to detect and classify the brain hemorrhage from medical images. (The code and data can be found here: http://cs.uno.edu/~{}tamjid/ Software/AIBH/code_data.zip)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.