Abstract
Non-invasive sleep monitoring holds significant promise for enhancing healthcare by offering insights into sleep quality and patterns. In this context, accurate detection of body position is crucial, as it provides essential information for diagnosing and understanding the causes of various sleep disorders, including sleep apnea. The aim of this work is to develop an efficient system for sleep position detection using a minimal number of FSR (Force Sensitive Resistor) sensors and advanced machine learning techniques. A hardware setup was developed incorporating 3 FSR sensors, on-board signal processing for frequency boundary filtering and gain adjustment, an ADC (Analog-to-digital converter), and a computing unit for data processing. The collected data was then cleaned and structured before applying various machine learning models, including Logistic Regression, Random Forest Classifier, Support Vector Classifier (SVC), K-Nearest Neighbors (KNN), and XGBoost. An experiment with 15 subjects in 4 different sleeping positions was conducted to evaluate the system. The SVC demonstrated notable performance with a test accuracy of 64%. Analysis of the results identified areas for future improvement, including better differentiation between similar positions. The study highlights the feasibility of using FSR sensors and machine learning for effective sleep position detection. However, further research is needed to improve accuracy and explore more advanced techniques. Future efforts will aim to integrate this approach into a comprehensive, unobtrusive sleep monitoring system, contributing to better healthcare services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.