Abstract

Catalyst layer (CL) is the core electrochemical reaction region of proton exchange membrane fuel cells (PEMFCs). Its composition directly determines PEMFC output performance. Existing experimental or modeling methods are still insufficient on the deep optimization of CL composition. This work develops a novel artificial intelligence (AI) framework combining a data-driven surrogate model and a stochastic optimization algorithm to achieve multi-variables global optimization for improving the maximum power density of PEMFCs. Simulation results of a three-dimensional computational fluid dynamics (CFD) PEMFC model coupled with the CL agglomerate model constitutes the database, which is then used to train the data-driven surrogate model based on Support Vector Machine (SVM), a typical AI algorithm. Prediction performance shows that the squared correlation coefficient (R-square) and mean percentage error in the test set are 0.9908 and 3.3375%, respectively. The surrogate model has demonstrated comparable accuracy to the physical model, but with much greater computation-resource efficiency: the calculation of one polarization curve will be within one second by the surrogate model, while it may cost hundreds of processor-hours by the physical CFD model. The surrogate model is then fed into a Genetic Algorithm (GA) to obtain the optimal solution of CL composition. For verification, the optimal CL composition is returned to the physical model, and the percentage error between the surrogate model predicted and physical model simulated maximum power densities under the optimal CL composition is only 1.3950%. The results indicate that the proposed framework can guide the multi-variables optimization of complex systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.