Abstract

Advanced data analysis methodologies, and in particular dimensionality reduction techniques, are now used more and more widely in the single-molecule charge transport community. They allow for comprehensive exploration of large datasets, where data display significant variance and sometimes contain (unknown) sub-populations. To this end, unsupervised approaches, which do not rely on class labels or pre-defined expectations can be advantageous. Multi-Parameter Vector Classification (MPVC) is one example and PCA-based methods have also been employed in this context [1,2,3]. We have recently shown how Transfer Learning may be employed to identify and quantify hidden features in single-molecule charge transport data [3]. Using open-access neural networks such as AlexNet, trained on millions of seemingly unrelated image data, feature recognition then does not require network training with application-specific data. Instead, the network recognises features in the input that it had learned in other contexts and, for example, identifies different shapes in conductance-distance traces as images of different worm species. Thus, our results show how Deep Learning methodologies can readily be employed for unsupervised data classification, even if the amount of problem-specific, ‘own’ data is limited. [1] M Lemmer, MS Inkpen, K Kornysheva, NJ Long, T Albrecht, “Unsupervised vector-based classification of single-molecule charge transport data”, Nat. Comm. 2016, 7, 12922. [2] T Albrecht, G Slabaugh, E Alonso, SMMR Al-Arif, “Deep learning for single-molecule science”, Nanotechnology 2017, 28 (42), 423001. [3] A Vladyka, T Albrecht, “Unsupervised classification of single-molecule data with autoencoders and transfer learning”, Mach. Learn.: Sci. Technol. 2020, 1, 035013.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.