Abstract
Cone-beam computed tomography (CBCT) is a popular imaging modality in dentistry for diagnosing and planning treatment for a variety of oral diseases with the ability to produce detailed, three-dimensional images of the teeth, jawbones, and surrounding structures. CBCT imaging has emerged as an essential diagnostic tool in dentistry. CBCT imaging has seen significant improvements in terms of its diagnostic value, as well as its accuracy and efficiency, with the most recent development of artificial intelligence (AI) techniques. This paper reviews recent AI trends and practices in dental CBCT imaging. AI has been used for lesion detection, malocclusion classification, measurement of buccal bone thickness, and classification and segmentation of teeth, alveolar bones, mandibles, landmarks, contours, and pharyngeal airways using CBCT images. Mainly machine learning algorithms, deep learning algorithms, and super-resolution techniques are used for these tasks. This review focuses on the potential of AI techniques to transform CBCT imaging in dentistry, which would improve both diagnosis and treatment planning. Finally, we discuss the challenges and limitations of artificial intelligence in dentistry and CBCT imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.