Abstract

The mechanistic target of rapamycin (mTOR) kinase is one of the top drug targets for promoting health and lifespan extension. Besides rapamycin, only a few other mTOR inhibitors have been developed and shown to be capable of slowing aging. We used machine learning to predict novel small molecules targeting mTOR. We selected one small molecule, TKA001, based on in silico predictions of a high on-target probability, low toxicity, favorable physicochemical properties, and preferable ADMET profile. We modeled TKA001 binding in silico by molecular docking and molecular dynamics. TKA001 potently inhibits both TOR complex 1 and 2 signaling in vitro. Furthermore, TKA001 inhibits human cancer cell proliferation in vitro and extends the lifespan of Caenorhabditis elegans, suggesting that TKA001 is able to slow aging in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.