Abstract
Hepatocellular carcinoma (HCC) recurrence following surgical resection remains a significant clinical challenge, necessitating reliable predictive models to guide personalised interventions. In this study, we sought to harness the power of artificial intelligence (AI) to develop a robust predictive model for HCC recurrence using comprehensive clinical datasets. Leveraging data from 958 patients across multiple centres in Australia and Hong Kong, we employed a multilayer perceptron (MLP) as the optimal classifier for model generation. Through rigorous internal cross-validation, including a cohort from the Chinese University of Hong Kong (CUHK), our AI model successfully identified specific pre-surgical risk factors associated with HCC recurrence. These factors encompassed hepatic synthetic function, liver disease aetiology, ethnicity and modifiable metabolic risk factors, collectively contributing to the predictive synergy of our model. Notably, our model exhibited high accuracy during cross-validation (.857 ± .023) and testing on the CUHK cohort (.835), with a notable degree of confidence in predicting HCC recurrence within accurately classified patient cohorts. To facilitate clinical application, we developed an online AI digital tool capable of real-time prediction of HCC recurrence risk, demonstrating acceptable accuracy at the individual patient level. Our findings underscore the potential of AI-driven predictive models in facilitating personalised risk stratification and targeted interventions to mitigate HCC recurrence by identifying modifiable risk factors unique to each patient. This model aims to aid clinicians in devising strategies to disrupt the underlying carcinogenic network driving recurrence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Liver international : official journal of the International Association for the Study of the Liver
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.