Abstract
Denovo generation of bioactive and drug-like hit molecules is a pivotal goal in computer-aided drug discovery. While artificial intelligence (AI) has proven adept at generating molecules with desired chemical properties, previous studies often overlook the influence of disease-specific cellular environments. This study introduces GxVAEs, a novel AI-driven deep generative model designed to produce hit molecules from transcriptome profiles using dual variational autoencoders (VAEs). The first VAE, ProfileVAE, extracts latent features from transcriptome profiles to guide the second VAE, MolVAE, in generating hit molecules. GxVAEs aim to bridge the gap between molecule generation and the biological context of disease, producing molecules that are biologically relevant within specific cellular environments or pathological conditions. Experimental results and case studies focused on hit molecule generation demonstrate that GxVAEs surpass current state-of-the-art methods, in terms of reproducibility of known ligands. This approach is expected to effectively find potential molecular structures with bioactivities across diverse disease contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.