Abstract

Hydropower is the most prevalent source of renewable energy production worldwide. As the global demand for robust and ecologically sustainable energy production increases, developing and enhancing the current energy production processes is essential. In the past decade, machine learning has contributed significantly to various fields, and hydropower is no exception. All three horizons of hydropower models could benefit from machine learning: short-term, medium-term, and long-term. Currently, dynamic programming is used in the majority of hydropower scheduling models. In this paper, we review the present state of the hydropower scheduling problem as well as the development of machine learning as a type of optimization problem and prediction tool. To the best of our knowledge, this is the first survey article that provides a comprehensive overview of machine learning and artificial intelligence applications in the hydroelectric power industry for scheduling, optimization, and prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.