Abstract
AbstractThis paper presents the development of language tutoring systems for non‐native speakers by leveraging advanced end‐to‐end automatic speech recognition (ASR) and proficiency evaluation. Given the frequent errors in non‐native speech, high‐performance spontaneous speech recognition must be applied. Our systems accurately evaluate pronunciation and speaking fluency and provide feedback on errors by relying on precise transcriptions. End‐to‐end ASR is implemented and enhanced by using diverse non‐native speaker speech data for model training. For performance enhancement, we combine semisupervised and transfer learning techniques using labeled and unlabeled speech data. Automatic proficiency evaluation is performed by a model trained to maximize the statistical correlation between the fluency score manually determined by a human expert and a calculated fluency score. We developed an English tutoring system for Korean elementary students called EBS AI PengTalk and a Korean tutoring system for foreigners called KSI Korean AI Tutor. Both systems were deployed by South Korean government agencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.