Abstract

In preserving the physical and psychological state of persons, ayurvedic medicines have an important role. The research aims to identify indigenous ayurvedic medicinal plant species using deep learning techniques. The social relevance of the proposal is so high as it would solve the problems of a wide range of stakeholders like physicians, pharmacy, government, and public. The identification of rare plant species may lead to a significant impact on the research associated with medical and other related areas. Another application can be the identification of plant species in forest and remote areas, where access to humans is limited. In such cases, the image of a particular plant species may be captured using drones and further analyzed. Currently, a lot of research work has been going on in the area of plant species identification using machine learning algorithms. The performance of Convolutional Neural Network (CNN), and pretrained models VGG16, and VGG19 has been compared for leaf identification problem. The dataset proposed in this research work contains indigenous medicinal plants of Kerala. The dataset consists of leaf images of 64 medicinal plants. CNN obtained a classification accuracy of 95.79%. VGG16 and VGG19 achieve an accuracy of 97.8% and 97.6% respectively, outperforms basic CNN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.