Abstract

ObjectiveThe incidence of osteosarcoma (OS) is low, but primary malignant bone tumors rank third among the causes of death in cancer patients under the age of 20. Currently, analysis of cellular structure and tumor morphology through microscopic images remains one of the main diagnostic methods for osteosarcoma. However, this completely manual approach is tedious, time-consuming, and difficult to diagnose accurately due to the similarities in certain characteristics of malignant and benign tumors. MethodsLeveraging the potential of artificial intelligence (AI) in assessing and classifying images, this study explored a modified CA-MobileNet V3 model that was embedded into innovative microscope products to enhance the microscope’s feature extraction capabilities and help reduce misclassification during diagnosis. ResultsThe intelligent recognition model method introduced in this paper has significant advantages in retrieval and classification of osteosarcoma cells and other cell types. Compared with models such as ShuffleNet V2, EfficientNet V2, Mobilenet V3 (without transfer learning), TL-MobileNet V3 (with transfer learning), etc., the model size is only 5.33 MB, is a lightweight model, and the accuracy of the improved model reached 98.69 %. In addition, the artificial intelligence microscope (AIM) with integrated design based on this model can also help improve diagnostic efficiency. ConclusionThe innovative method of the CA-MobileNet V3 automatic classification model based on deep learning provides an efficient and reliable solution for the pathological diagnosis of osteosarcoma. This study contributes to medical image analysis and provides doctors with an accurate and valuable tool for microscopic diagnosis. It also promotes the advancement of artificial intelligence in medical imaging technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.