Abstract

ABSTRACT The growing diversity and volume of e-waste products are emerging as significant and complex challenges from environmental, economic, and recycling perspectives. This surge not only hampers the effective management and conservation of precious resources and strategically important materials (SIMs) but also intensifies the problem. Addressing this pressing global issue necessitates a holistic and intelligent decision-making model capable of effortlessly handling the vast variety and volume of e-waste products. This paper introduces a novel multi-criteria decision support system (DSS) that combines AI visual recognition with a multi-fuzzy model to precisely determine the optimal End-of-Life (EoL) recovery route. Additionally, the functionality of the proposed DSS is showcased through a pilot implementation and case study examples, emphasising the advantages of a fully automated, reliable, and efficient EoL management for e-waste.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.