Abstract

Artificial intelligence (AI) applications in oncology have been developed rapidly with reported successes in recent years. This work aims to evaluate the performance of deep convolutional neural network (CNN) algorithms for the classification and detection of oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) in oral photographic images. A dataset comprising 980 oral photographic images was divided into 365 images of OSCC, 315 images of OPMDs and 300 images of non-pathological images. Multiclass image classification models were created by using DenseNet-169, ResNet-101, SqueezeNet and Swin-S. Multiclass object detection models were fabricated by using faster R-CNN, YOLOv5, RetinaNet and CenterNet2. The AUC of multiclass image classification of the best CNN models, DenseNet-196, was 1.00 and 0.98 on OSCC and OPMDs, respectively. The AUC of the best multiclass CNN-base object detection models, Faster R-CNN, was 0.88 and 0.64 on OSCC and OPMDs, respectively. In comparison, DenseNet-196 yielded the best multiclass image classification performance with AUC of 1.00 and 0.98 on OSCC and OPMD, respectively. These values were inline with the performance of experts and superior to those of general practictioners (GPs). In conclusion, CNN-based models have potential for the identification of OSCC and OPMDs in oral photographic images and are expected to be a diagnostic tool to assist GPs for the early detection of oral cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.