Abstract

AIM: to estimate the implementation of the original method that uses artificial intelligence (AI) to detect colorectal neoplasms.MATERIALS AND METHODS: we selected 1070 colonoscopy videos from our archive with 5 types of lesions: hyperplastic polyp, serrated adenoma, adenoma with low-grade dysplasia, adenoma with high-grade dysplasia and invasive cancer. Then 9838 informative frames were selected, including 6543 with neoplasms. Lesions were annotated to obtain data set that was finally used for training a convolution al neural network (YOLOv5).RESULTS: the trained algorithm is able to detect neoplasms with an accuracy of 83.2% and a sensitivity of 77.2% on a test sample of the dataset. The most common algorithm errors were revealed and analyzed.CONCLUSION: the obtained data set provided an AI-based algorithm that can detect colorectal neoplasms in the video stream of a colonoscopy recording. Further development of the technology probably will provide creation of a clinical decision support system in colonoscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.