Abstract

Real-time biosensing systems can interrogate the association between the analyte and the biorecognition element across time. Typically, the resulting data are preprocessed to offer valuable bioanalytical information obtained at a single optimal point of such a real-time response; for instance, a diagnosis of certain medical conditions can be established depending on a biomarker (analyte) concentration measured at an optimal time, that is, a threshold. Exploiting this conventional approach, we previously developed a nanophotonic immunoassay for bacterial vaginosis diagnosis exhibiting a clinical sensitivity and specificity of ca. 96.29% (n = 162). Herein, we demonstrate that a real-time biosensing platform assisted by artificial intelligence not only obviates biomarker concentration (i.e., a threshold) determination but also increases sensitivity and specificity in the targeted diagnostic, thereby reaching values of up to 100%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.